メーリングリストの皆様、
(重複して受け取られた場合はご容赦ください)
東大物工渡辺研究室の小野清志郎です。
当研究室では下記のセミナー(ハイブリッド形式)を企画しております。
対面・オンライン参加に関わらず、参加をご希望される方は以下のページから事前登録をお願いします。
sites.google.com/view/watanabegroup/japanese/seminars/yamada
皆様のご参加をお待ちしております。
小野清志郎
====
Speaker: Masahiko Yamada (Gakushuin University)
Date & Time: 2 pm, February 3, 2023.
Room: Seminar Room A&D (Engineering Building #6 <www.google.com/url?q=https%3A%2F%2Fsites.google.com%2Fview%2Fwatanabegroup%2Fenglish%2Fdirections&sa=D&sntz=1&usg=AOvVaw3spvbtsfX_HeJ7YLSzYMBm>) / Online (Zoom)
Title: The MPRG
Abstract:
We have proposed a new framework to solve various quantum many-body problems named matrix product renormalization group (MPRG) [1]. MPRG solves the sign problem of conventional Monte Carlo methods, and can be regarded as a generalization of a density matrix renormalization group (DMRG) in one dimension. Compared with DMRG, MPRG is directly applicable to infinite systems, higher-dimensional systems, finite-temperature systems, and even to open quantum systems. In particular, a nonvariational variant of MPRG can be used to simulate non-Hermitian models like the Yang-Lee model with a Yang-Lee edge singularity.
A variational variant of MPRG has a further application to many Hermitian systems. By utilizing a continuous projected entangled pair state (cPEPS), we can even solve two-dimensional systems at finite temperature. As for the accuracy, cPEPS outperforms PEPS with about a one-digit-higher precision when the same bond dimension is used. The finite-temperature observables like a specific heat are also calculated and compared with a quantum Mote Carlo simulation. Due to the absence of a sign problem, a Trotter error, or a finite-size effect, the observables can easily be extrapolated to the thermodynamic limit only by the bond dimension scaling.
If time allows, I will start the seminar by showing a simple simulation of two-dimensional Hermitian systems on my laptop. MPRG is easy to code. The main routine is less than 100-line-long.
[1] Masahiko G. Yamada et al., arXiv:2212.13267 (2022).
====
————————————————-
Computational Material Physics Mailing List
home: www.issp.u-tokyo.ac.jp/public/cmp/
archive: cmp-ml.issp.u-tokyo.ac.jp
twitter: https://twitter.com/cmp_ml
————————————————-