メーリングリストの皆様
東京大学生産技術研究所の李と申します。
羽田野研究室では、下記の通りセミナーを開催致します。
皆様の奮ってのご参加をお待ちしております。
なお、当研究室におけるセミナー情報は、次のリンクよりご覧頂けます。
hatano-lab.iis.u-tokyo.ac.jp/seminar-j.html
当セミナーは原則として現地会場での開催となりますが、オンライン参加をご希望の方はご連絡下さい。
*本案内は複数のメーリングリストにお送りしております。重複して受け取られました方は何卒ご容赦下さい。
Dear All,
This is Jaeha Lee from the Institute of Industrial Science, the University of Tokyo.
We are pleased to announce an upcoming seminar as follows.
Information regarding our seminar series is available on our web site.
hatano-lab.iis.u-tokyo.ac.jp/seminar-e.html
Those who are interested are welcome to join us on-site. For those who wish to join us online, please feel free to contact us.
* Apologies if you have received multiple copies of this announcement.
記
日時:2025年05月15日(木)14時00分〜 / Thursday, 15th May 2025, 14:00 JST –
場所:東京大学生産技術研究所 研究実験棟I大会議室 / The large conference room, Research and Testing Complex I, IIS, the University of Tokyo
来場:http://hatano-lab.iis.u-tokyo.ac.jp/access-j.html / hatano-lab.iis.u-tokyo.ac.jp/access-e.html
講師:永山龍那(Nagayama Ryuna)さん(東大 / U. Tokyo)
演題:Infinite variety of activities and thermodynamic speed limits based on general means
要旨:
Thermodynamic speed limits (TSLs) represent a fundamental constraint that faster state changes require greater dissipation. In TSLs for Markov jump processes, the kinetic activity is essential to relate dissipation to the speed of time evolution. The kinetic activity is measured in several ways: One common way is to use the arithmetic mean of the forward and backward fluxes, which gives the dynamical activity. Instead of the arithmetic mean, we can also use the logarithmic mean, which provides the dynamical state mobility [1]. While not directly used in TSLs, other means are also used in nonequilibrium thermodynamics [2]. For instance, the geometric mean of the bidirectional fluxes appears in the macroscopic fluctuation theory to describe the fluctuations of empirical quantities. However, whether TSLs can be derived with arbitrary means remains an open question.
We address this question by generalizing activity and deriving TSLs based on a general class of means [3]. We identify the mathematical conditions under which such means yield TSLs and reveal that various means, including the Stolarsky mean, satisfy these conditions. Since the Stolarsky mean includes an infinite variety of means, such as the harmonic, geometric, logarithmic, and arithmetic means, we can derive infinitely many TSLs. We show that the lower bounds on dissipation in these TSLs correspond to the minimum dissipation achievable under conservative forces. This framework unifies existing results based on the dynamical activity [4] and the dynamical state mobility [1], providing a comprehensive perspective on TSLs. We also discuss the hierarchy of TSLs, the application to deterministic chemical systems, and the comparison with excess entropy production.
[1] T. V. Vu and K. Saito, Phys. Rev. X 13(1), 011013 (2023).
[2] M. A. Peletier et al., Calc. Var. Partial Differ. Equ. 61, 1-85 (2022).
[3] R. Nagayama, K. Yoshimura, and S. Ito, Phys. Rev. Res. 7(1), 013307 (2025).
[4] A. Dechant, J. Phys. A 55(9), 094001 (2022).
ーーーーーーーーーーーーーーーーーーーーー
李 宰河
〒277-8574 千葉県柏市柏の葉5-1-5
東京大学生産技術研究所
電 話:04-7136-6962
メール:lee@iis.u-tokyo.ac.jp
ーーーーーーーーーーーーーーーーーーーーー
————————————————-
Computational Material Physics Mailing List
home: www.issp.u-tokyo.ac.jp/public/cmp/
archive: cmp-ml.issp.u-tokyo.ac.jp
X: x.com/cmp_ml
————————————————-